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Non-classical symmetry reduction: example of the Boussinesq 
equation 

D Levit and P Winternitz 
Centre de Recherches Mathematiques, UniversitC de Montreal, C P  6128-A, Montreal, 
Quebec, Canada H3C 357 

Received 2 February 1989 

Abstract. A symmetry of an equation will leave the set of all solutions invariant. A 
'conditional symmetry' will leave only a subset of solutions, defined by some differential 
condition, invariant. We show how a specific class of conditional symmetries can be used 
to reduce a partial differential equation to an ordinary one. In particular, for the Boussinesq 
equation, these conditional symmetries, together with the ordinary ones, provide all possible 
reductions to ordinary differential equations. Agroup theoretical explanation ofthe recently 
obtained new reductions is provided. 

1. Introduction 

A standard way of obtaining particular solutions of non-linear partial differential 
equations (PDE)  is the method of symmetry reduction. The essence of the method is 
that one looks for solutions of the equation that are invariant under some chosen 
subgroup Go of the symmetry group G of the equation. This invariance makes it 
possible to rewrite the equation in terms of group invariants and thus to reduce the 
number of independent variables involved. If certain technical conditions on the 
structure of the orbits of Go (acting on the space of independent and dependent 
variables) are satisfied, then the equation can be reduced to an ordinary differential 
equation [ 1-31 (ODE).  The method is entirely algorithmic and can, to a large degree, 
be performed on a computer, using various symbol manipulating packages [4,5]. 

Recently Clarkson and Kruskal [6] (hereafter referred to as C K )  have studied the 
Boussinesq equation 

ut, + uuxx + ( + uxxxx = 0 (1.1) 

u ( x ,  t )  = U(x, t, w ( z ) )  

and found all of its similarity solutions. By this they mean all solutions of the form 

(1.2) 
where U and z are functions of the indicated variables and w ( z )  satisfies an ordinary 
differential equation (ODE), obtained by substituting (1.2) into (1.1). 

Their method was entirely straightforward, made no use of group theory and led 
to some complicated equations for the variable z(x, t )  and the function U of (1.2). In 
a tour deforce the authors solved the equations and obtained numerous new reductions 
of the Boussinesq equation (1.1) (in addition to the known ones, due to dilational and 

z = z(x, t )  
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translational invariance). They expressed the 'hope that a group theoretic explanation 
of the method will be possible in due course'. 

The purpose of this paper is to provide such an explanation and, by the same 
token, to advocate an algorithmic procedure for reducing partial differential equations 
to ordinary ones, going beyond classical symmetry reduction. The framework is one 
that is already available, namely the 'non-classical method' introduced by Bluman and 
Cole [7]. 

In 0 2 we reformulate and reinterpret this non-classical method in a manner that 
is well adapted to existing computer programs and elucidate some of its features. In 
particular, we stress that 'non-classical symmetries' are not symmetries of the equation 
itself, but of the equation, together with a specific auxiliary condition. This first-order 
PDE plays the role of the 'side condition' introduced by Olver and Rosenau [S, 91. In 
the same section we apply this non-classical method and the corresponding 'conditional 
symmetries' to the Boussinesq equation. In  a quite simple manner we retrieve the 
general structure of the C K  results. The individual C K  reductions are all obtained in 
0 3, together with a group theoretical explanation. Section 4 is devoted to conclusions 
and open problems. 

2. General form of the conditional symmetries and non-classical reductions 

2.1. General comments 

Let us first reformulate the Bluman and Cole 'non-classical method' [7] in terms of 
vector fields and their prolongations. This could be done for an arbitrary system of 
differential equations, but for the purposes of this paper, we restrict ourselves to one 
nth-order PDE for a function u ( x ,  t )  of two variables. We write this equation formally 
as 

A"(x, t ,  U, ut, U,, uti, u.xt, * * = O  (2.1) 

(where the subscripts on U denote partial derivatives). 

invariant consists of vector fields of the form 
The Lie algebra of the Lie group of local point transformations leaving (2.1) 

v = 6(x, t, u)a,+ d x ,  t ,  u ) a ,  + 4 ( x ,  t ,  u ) d ,  (2.2) 

where 6, T and 4 are functions of x, t and U that are determined from the invariance 
requirement 

pr('')V. A(n ' lAo ,~=O = 0. (2.3) 

The nth prolongation pr(" 'V of V is given explicitly in terms of 6, T and 4 of (2.2), 
e.g. in [3], and we do not reproduce it here. 

Instead of looking for this 'symmetry algebra' in the classical sense, let us leave V 
undetermined and let us add an auxiliary first-order equation to (2.1), namely 

A"'(X, t ,  U, u t ,  U,)=&(X, t ,  u ) u , + T ( ~ ,  t, U)U, - C $ ( X ,  t ,  u ) = O .  (2.4) 
Equation (2.4) is as yet unspecified and it will be determined together with the vector 
field V, involving the same functions 6, T and 4. 

We now look for the simultaneous symmetry group of equations (2 .1)  and (2.4), 
using the classical method. In other words we require that the appropriate prolongation 
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of the vector field should annihilate both equations on the solution surface of both 
equations: 

pr'") V .  A(")(Ai ,~ i=o .Ai l~=o = 0 (2.5) 

pr'"V. A ' l ' l A ~ ~ ~ ~ = o , A i ~ ~ = o  = 0. (2.6) 

Notice that condition (2.6) is satisfied trivially and is hence no restriction on V. Indeed 
(2.4) was chosen precisely because A") is an invariant of V ,  i.e. condition (2.6) is an 
identity, satisfied for all functions 6, 7 and 4. Indeed, we have 

pr'"V. A(')= - ( , $ , u ~ + T ~ u ,  - & ) A ( ' )  (2.7) 

which vanishes for A'') = 0, without imposing any conditions on the functions 6, T and 
4. 

We can assume T ( X ,  t ,  U )  # 0 in (2.4) and use (2.4), together with its differential 
consequences, to eliminate U, and all higher derivatives involving time (U,,, utX, utXx, . , .) 
from equation (2.5). The highest derivative involving only the x variable is eliminated 
from (2.5) using (2.1). The coefficients of the linearly independent expressions in the 
remaining derivatives must then be set equal to zero. This provides a system of 
determining equations for the functions [(x, t, U), ~ ( x ,  t ,  U )  and +(x, t, U). In general, 
these equations will be non-linear. 

If we can solve the determining equations we obtain the explicit form of the vector 
field V ,  which we shall call a 'conditional symmetry' operator. If we integrate such a 
vector field we obtain a one-parameter group of local point transformations: 

x ' = X * ( x ,  I, U )  t ' =  T*(x,  t, U )  U'= UA(X,  t ,  U). (2.8) 
These transformations will, however, in general not leave (2.1) invariant, i.e. they will 
not transform solutions amongst each other. What they will do, is take solutions of 
(2.1), that also satisfy the condition (2.4), into solutions that also satisfy both equations 
(hence 'conditional symmetries'). 

Thus, conditional symmetries are of no great use for obtaining new solutions from 
old ones. On the other hand, they turn out to be extremely useful for performing 
symmetry reduction. Indeed, we can look for solutions of the considered equation 
(2.1) that are invariant under the transformations (2.8). This boils down to finding 
the two invariants of (2.8) (directly from the conditional symmetry operator V), say 

Zl(X, t )  = 5 12(x, t ,  U )  = F. (2.9) 
Just as in the classical method we can then express u(x ,  t )  in terms of F (if dZ,/du # 0), 
consider F as a function of 6, substitute back into (2.1) and obtain an ODE for F ( 6 ) .  
We are actually performing a classical reduction for the studied equation and the 
supplementary condition (2.4), but that auxiliary equation is already solved trivially, 
and hence imposes no further restrictions. 

Several comments on conditional symmetries are in order here. First of all, these 
symmetries do not form a vector space, still less a Lie algebra. Indeed, each conditional 
symmetry operator is adapted to its own auxiliary equation (2.4). Moreover, the 
auxiliary equations are in general not invariant under the symmetry group. Hence a 
linear combination of an ordinary (classical) symmetry and a conditional symmetry 
is, in general, not a symmetry at all (and will not provide a reduction of the PDE). 

On the other hand, the symmetry group G of a PDE can be put to good use in 
connection with the conditional symmetries. Indeed, once conditional symmetry 
operators are found, they can be simplified and classified into conjugacy classes under 
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the action of the group G .  A representative of each conjugacy class will give a specific 
reduction. The other reductions belonging to the same class will then be re-obtained 
by group transformations. Once a solution u(x, t )  is found, the entire group G can 
be applied to it, since we no longer need to impose the supplementary condition (2.4). 

2.2. General procedure for the Boussinesq equation 

We shall now apply the procedure outlined above, including the symmetry reduction, 
to the Boussinesq equation [lo] ( B E ) .  This equation is of considerable physical and 
mathematical interest; for a minireview of its applications and properties, see CK.  We 
thus specify equation (2.1) to be 

(2.10) 

The Lie point symmetry group of (2.10) is well known [6, 1 1 ,  121 and consists of 

~ = x a , + 2 t a ,  -2ua, P ,  = a ,  P,,=a,. (2.11) 

The BE is also invariant under discrete transformations generated by time reversal T 
and coordinate reflection X ,  defined as 

U,, + uu,, + ( U, )2  + Uxxr;, = 0. 

dilations and translations, generated by the Lie algebra of vector fields 

T :  t + - t ,  X + X ,  U + U  x: t + t ,  x+-x ,  u + u .  (2.12) 

We use a MACSYMA program [5] to perform the operations outlined in (2.5) and 
(2.6), where A“ is now the left-hand side of (2.10). The variables to be eliminated 
from the resulting expression are U ,  (using the condition (2.4)) and ux,,, (using (2.10). 
The program takes care of all the differential consequences. The program solves part 
of the determining equations and prints out a reduced system of fourteen determining 
equations. The first four are easy to solve and from them we find that the general 
form of the conditional symmetry operator is (2.2) with T(X, t ,  U )  arbitrary and 

6 = F ( X ,  t ) T  4 = ( R ( X ,  t ) U + s ( X ,  t ) ) T .  (2.13) 

Once these partial results are taken into account, the remaining system reduces to five 
determining equations that can easily be solved by hand. We find that T remains 
arbitrary (as it should), and with no loss of generality we can set T =  1. 

The resulting conditional symmetry operator is 

v = a, + [ a (  t )x+ p (  t)]a, - [2a( t)u + 2a(& +2*2)x2 

+ 2( a s  + &p + 4aZp)x  + 2p(@ + 2ap)Ia” (2.14) 

where a ( t )  and P ( t )  are solutions of the O D E  

&+2ad. - 4 a 3 = 0  ( 2 . 1 5 ~ )  

$+2aS  -4a’p = O  (2.156) 

and the dots denote time derivatives. 
These equations are easy to solve and we shall do this below in 0 3. Here we shall 

show that (2.14) and (2.15) already provide the required symmetry reduction and 
reproduce all the reductions obtained in C K .  

The invariants of the local point transformations generated by (2.13) are obtained 
by solving the PDE 

v. q(x ,  t, U )  = 0. 
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The corresponding characteristic system is 

d t  dx  
1 a x  + p 

We solve these two equations to obtain the two invariants z and w, in terms of which 
we have 

( 2 . 1 6 ~ )  

d u  - - - 
2 a u  + 2 a (  ci + 2 a 2 ) x 2 + 2 (  ab + Cip + 4 a y ? ) x  + 2 p ( b  + 2 a p ) ’  

U ( X ,  t )  = w ( z ) K 2 ( t )  - ( a x  + p ) ’  

Z(X, t ) = x K ( t ) -  P ( s ) K ( s )  d s  I: 
where we have defined 

K ( t ) = exp ( - Inr a ( s ) d s  ) . 

( 2 . 1 6 b )  

( 2 . 1 6 ~ )  

Substituting (2 .16)  into the Boussinesq equation (2 .10)  we obtain an ODE for w ( z ) :  

(2 .17)  w ”” + w w  ” + w ’I + ( Az + B )  w ’ + 2 A  w = 2 ( A z  + B ) * 
where the primes are z derivatives and 

(2 .18)  

Using equations (2 .15)  for a and p (without necessarily solving them), it is easy to 
verify that d A / d t  = d B / d t  = 0, i.e. A and B are constants. 

Equation (2 .17)  coincides with equation (3 .16)  of C K  and (2 .16)  is closely related 
to equation (3 .15)  of CK. We have provided the group theoretical origin of the CK 

reductions and also the corresponding conditional symmetry (2 .14)  that underlies their 
reductions. 

3. Discussion of the conditional symmetries of the Boussinesq equation 

3.1. The vectorjelds  and the reductions 

In order to make (2 .16) - (2 .18)  explicit we must solve the ODE (2 .15) .  Notice that this 
is a decomposable system: ( 2 . 1 5 a )  is a simple non-linear equation for a ;  once (Y is 
known, (2.15b) is a linear equation for p. 

As a matter of fact, ( 2 . 1 5 a )  is a well known equation, namely a special case of the 
standard PainlevC equation PX in the PainlevC and Gambier classification of second- 
order differential equations with no movable critical points [ 1 3 - 1 5 ] .  Its general solution 
is obtained by putting 

cr = H / 2 H  ( 3 . 1 )  
where H satisfies 

H 2 = h o H 3 +  hi ho ,  h l  =constant. 

For # 0 we obtain p from ( 2 . 1 5 6 )  in the form 
( 3 . 2 )  

( 3 . 3 )  

Let us now run through the individual cases. 
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( a )  ho= h ,  = O .  From (2.15), (2.16)-(2.18) and (3.1) we obtain 

ff = o  P =Po+P, t  K = l  A=O B = - P ,  (3.4) 

where P I  and P2 are constants. 
If p ,  = 0 we have a classical (translational) symmetry. If P I  # 0 we use translations 

in t to set Po = 0, dilations (and possibly time-reversal invariance) to set P I  = 1. The 
resulting conditional symmetry and non-classical reduction are 

v = a , + r a , - 2 t a U  

z = x - - I t2  2 
2 U = w ( z )  - t 

( 3 . 5 ~ )  

(3.5b) 

w" '+ww'-w=2z+c,  (3.5c) 

where c ,  is an integration constant. Equation ( 3 . 5 ~ )  is obtained from (2.17), using (3.4) 
with Po = 0, P I  = 1 and integrating once. It can be solved in terms of the PainlevC 
transcendent PI1 (see CK) .  

P 2  p =pIt4+- 

(b)  ho # 0, h ,  = 0. In this case we find 

1 
t t 

K = t  A=O B = -5P l .  (3.6) (y = -- 

From (2.16) we see that we can set P2 = 0 by translating x. By dilations and coordinate 
reflections we can transform PI into PI = 1, unless we already have P I  = 0. 

The conditional symmetry and reduction formulae are 

( 3 . 7 ~ )  

z = xt -1 6 P l t 6  U(X, t )  = w ( ~ ) t ~ - ( x / t - - p , t ~ ) ~ .  (3.76) 

For P I  = 0 the reduced equation can be twice integrated to yield 

w"+$v2= C I Z + C O  (3.7c) 

which for c ,  = 0 leads to elliptic functions, for c, # 0 to the PI transcendent. 
For PI = 1 the reduced equation can be integrated once to give the equation 

w"'+ ww'- 5 w = 50z + CO 

that can be solved in terms of the PI1 transcendent. 

(3.7d) 

( c )  ho = 0, h ,  # 0. We obtain 

B = O .  (3.8) A = :  1 
ff =- p=p , t+ -  P2 K = -  1 

2t t Ji 
Looking at (2.16), or at the condjtional symmetry, we see that P 2  can be set equal to 
zero by x translations and that we either have P I  = 0 or P I  can be dilated and reflected 
into P I  = 1. The case P I  = O  is of no interest here, since it reproduces the classical 
reduction by dilations. For PI = 1 we have 

( 3 . 9 ~ )  

(3.9b) 

w""+ ww"+ (w')2+ i Z W ' +  ;w =E.'. (3.9c) 
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This is the same equation that is obtained using dilational invariance and has been 
studied extensively [ l l ,  16, 171. 

( d )  h,# 0,  h ,  # 0. In this case we put H = P ( z ) / h o  and obtain 

l P  
2 P  2P [ P ( s ) ] ’  p = p1 2p+ P p2 P 1,‘ w c y = - -  (3 .10)  

P2 = 4P3 - g ,  (3 .11)  

where g ,  is a real constant and P = P (  t, 0 ,  g 3 )  is a special case of the Weierstrass elliptic 
function P ( t ,  g , ,  g 3 )  [ 1 8 ] .  The constants g2 and g ,  are called the invariants of the 
Weierstrass elliptic functions and are related to the real and imaginary periods. Again, 
once we write out either the reduction formulae, or the conditional symmetry, we see 
that pI can be set equal to zero by an x translation. 

We find 

K = [ p ( t ) ] - ’ / ’  A = - 3 g , / 4  B = O  

and 

- [ $ U + ~ A ’ + ~  2 P  (’+ 1 2 P W ) x + i / l :  W ( ; + 6 P W ) ] d u  

5: z = ~ [ P ( t ) ] - ” ~ + ~ / 3 2 g ; ’ P ( t ) - ’ ’ *  1 P ( s )  ds 

u ( x , t ) = w ( z ) P - l -  - - x + p 2 -  w (; ,P 2P p l2 
where we have defined 

The reduced equation in this case is 
9 2 2  - t g , w ’ - i g , w  =j jg3z . w l I I f  + ww”+ 

( 3 . 1 2 )  

( 3 . 1 3 a )  

( 3 , 1 3 6 )  

( 3 . 1 3 ~ )  

( 3 . 1 3 d )  

The function W (  t )  can also be expressed in terms of elliptic integrals, but we shall 
stick with the Weierstrass elliptic function throughout. The reduction (3 .13)  is 
equivalent to the CK reduction in which they use Jacobi elliptic functions and elliptic 
integrals. 

3.2. Examples of group transformations corresponding to conditional symmetries 

Each of the conditional symmetry operators of § 3.1 can be integrated to give a Lie 
point transformation, leaving the common solution space of the Boussinesq equation 
and the corresponding side condition ( 2 . 4 )  invariant. 

dx’/dA = f(x’, t ’ ,  U ‘ )  

The transformations are obtained by solving the equations 

dt‘/dA = ~ ( x ’ ,  t‘ ,  U ’ )  du’/dA = 4 ( x ’ ,  t ’ ,  U ’ )  ( 3 . 1 4 a )  
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subject to the initial conditions 

( x ’ ,  t ‘ ,  u ’ ) I ,= ,=  ( x ,  t,  U). (3.14b) 

Let us just consider two examples. 

t ’ =  t + A  x ’ =  x + A t + i A 2  ~ ’ ( x ’ ,  ~ ‘ ) = u ( x ,  t)-2tA-A2. (3.15) 

If we now assume that u ( x ,  t )  is a solution of the Boussinesq equation and substitute 
u ’ ( x ’ ,  t‘) into the same equation (for primed variables) we obtain 

(a)  Case (3.5). Substituting from (3.5) into (3.14) and integrating we find 

(U, + tu , ) ,  = 0. (3.16) 

Equation (3.16) is a differential consequence of (2.4), which in this case takes the form 

(3.17) 

In other words, u ’ ( x ‘ ,  t ’ )  is a solution of the Boussinesq equation only if U ( X ,  t )  
satisfies both the Boussinesq equation and (3.16) (which is actually somewhat weaker 
than (3 .17 ) ) .  

U, + tu, + 2 t  =o.  

(b) Case (3.7) for P I  = 0. The group transformation is 

xt  
t + A  

t ‘ =  t + A  X I = -  u ‘ ( x ’ ,  t ‘ )  = U ( X ,  t )  

(3.18) 

Substituting u ’ ( x ’ ,  t ’ )  ito the Boussinesq equation and assuming that U ( X ,  t )  is a solution, 
we obtain a second-order equation for u ( x ,  t ) .  It can be written 

~ d x ,  ~ , A ) A ’ + A ~ ( X ,  ~ , A ) ( A ’ ) , + A , ( x ,  ~ , A ) ( A ’ ) ,  = o  
where 

as 

(3.19) 

(3.20) 

and the coefficients A, are 

A ,  =2[ t 4 (  t - A )  - ( t  + A)’] A2 = t (  t + A ) [  t 4 -  ( t  + A ) 4 ]  

A3= -x[(  t + A ) ’ -  t 4 (  t - A ) ] .  (3.21) 

Thus, if u ( x ,  t )  satisfies both the Boussinesq equation and the condition A ’  = 0, 
u ’ ( x ’ ,  t ’ )  will also satisfy these conditions (and (3.19) is satisfied). 

This example is typical of the general case. For (3.7) with P I  = 1, (3.9) and (3.13) 
we can always quite easily obtain the corresponding group transformation. Substituting 
u ‘ ( x ’ ,  t ’ )  into the Boussinesq equation (of which u ( x ,  t )  is a solution) we always obtain 
an equation of the type (3.19), where A’ = 0 is the appropriate subsidiary condition 
and the (inessential) coefficients A I ,  A2 and A ,  vary from case to case. 

4. Conclusions 

The main conclusion that we draw is that, from the point of view of symmetry reduction, 
the ‘non-classical method’ [2] should be treated on equal footing with the classical 
one. Indeed, for the Boussinesq equation, reduction by subgroups of the symmetry 
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group yields similarity solutions (reduction by dilations D ) ,  coordinate-independent 
solutions (reduction by space translations P,) and a one-parameter family of travelling 
wave solutions (reduction by Po- UP,). The conditional symmetries lead to four 
individual reductions, namely ( 3 . 5 ) ,  ( 3 . 7 c ) ,  ( 3 . 7 d )  and ( 3 . 9 ) ,  and to a further one- 
parameter class of solutions, namely (3 .13)  (the parameter is g 3 ) .  

The ‘non-classical method’ is actually the classical one, applied not just to the 
considered equation, but to the equation, together with the condition ( 2 . 4 ) .  As was 
emphasised in 0 2 ,  the condition ( 2 . 4 )  is different for each conditional symmetry V of 
( 2 . 2 ) .  Moreover, the side condition (2.4) is not necessarily invariant under the symmetry 
group of the equation under consideration. 

Hence conditional symmetries do not form a vector space and cannot be combined 
with ordinary symmetries. 

The procedure that we propose when performing symmetry reduction is the follow- 
ing. First find the symmetry group G of the equation and use it to find all reductions 
related to invariance under subgroups of G .  After that, find all conditional symmetries 
and use the symmetry group G to simplify them. The first step involves only linear 
equations, the second step non-linear ones. 

Two very important questions remain open. (i)  When is the combination of the 
classical and non-classical method sufficient to find all possible reductions? For the 
Boussinesq equation Clarkson and Kruskal showed that no other reductions to ODE 

exist. ( i i)  When are the conditional symmetries needed? It was shown in C K  that for 
the Burgers, Korteweg-de Vries and modified Korteweg-de Vries equations all reduc- 
tions are obtained from subgroups of the symmetry group (we have obtained an 
analogous result for the non-linear Schrodinger equation). 

It would be of considerable interest to have an a priori criterion telling us when 
classical symmetries provide all possible reductions. 
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